3.244 \(\int \frac{(e \cos (c+d x))^{9/2}}{(a+a \sin (c+d x))^2} \, dx\)

Optimal. Leaf size=114 \[ \frac{14 e^3 \sin (c+d x) (e \cos (c+d x))^{3/2}}{15 a^2 d}+\frac{14 e^4 E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{e \cos (c+d x)}}{5 a^2 d \sqrt{\cos (c+d x)}}+\frac{4 e (e \cos (c+d x))^{7/2}}{3 d \left (a^2 \sin (c+d x)+a^2\right )} \]

[Out]

(14*e^4*Sqrt[e*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(5*a^2*d*Sqrt[Cos[c + d*x]]) + (14*e^3*(e*Cos[c + d*x]
)^(3/2)*Sin[c + d*x])/(15*a^2*d) + (4*e*(e*Cos[c + d*x])^(7/2))/(3*d*(a^2 + a^2*Sin[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.0922453, antiderivative size = 114, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {2680, 2635, 2640, 2639} \[ \frac{14 e^3 \sin (c+d x) (e \cos (c+d x))^{3/2}}{15 a^2 d}+\frac{14 e^4 E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{e \cos (c+d x)}}{5 a^2 d \sqrt{\cos (c+d x)}}+\frac{4 e (e \cos (c+d x))^{7/2}}{3 d \left (a^2 \sin (c+d x)+a^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[(e*Cos[c + d*x])^(9/2)/(a + a*Sin[c + d*x])^2,x]

[Out]

(14*e^4*Sqrt[e*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(5*a^2*d*Sqrt[Cos[c + d*x]]) + (14*e^3*(e*Cos[c + d*x]
)^(3/2)*Sin[c + d*x])/(15*a^2*d) + (4*e*(e*Cos[c + d*x])^(7/2))/(3*d*(a^2 + a^2*Sin[c + d*x]))

Rule 2680

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(2*g*(
g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(2*m + p + 1)), x] + Dist[(g^2*(p - 1))/(b^2*(2*m +
 p + 1)), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 2), x], x] /; FreeQ[{a, b, e, f, g}, x] && Eq
Q[a^2 - b^2, 0] && LeQ[m, -2] && GtQ[p, 1] && NeQ[2*m + p + 1, 0] &&  !ILtQ[m + p + 1, 0] && IntegersQ[2*m, 2*
p]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2640

Int[Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[b*Sin[c + d*x]]/Sqrt[Sin[c + d*x]], Int[Sqrt[Si
n[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{(e \cos (c+d x))^{9/2}}{(a+a \sin (c+d x))^2} \, dx &=\frac{4 e (e \cos (c+d x))^{7/2}}{3 d \left (a^2+a^2 \sin (c+d x)\right )}+\frac{\left (7 e^2\right ) \int (e \cos (c+d x))^{5/2} \, dx}{3 a^2}\\ &=\frac{14 e^3 (e \cos (c+d x))^{3/2} \sin (c+d x)}{15 a^2 d}+\frac{4 e (e \cos (c+d x))^{7/2}}{3 d \left (a^2+a^2 \sin (c+d x)\right )}+\frac{\left (7 e^4\right ) \int \sqrt{e \cos (c+d x)} \, dx}{5 a^2}\\ &=\frac{14 e^3 (e \cos (c+d x))^{3/2} \sin (c+d x)}{15 a^2 d}+\frac{4 e (e \cos (c+d x))^{7/2}}{3 d \left (a^2+a^2 \sin (c+d x)\right )}+\frac{\left (7 e^4 \sqrt{e \cos (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx}{5 a^2 \sqrt{\cos (c+d x)}}\\ &=\frac{14 e^4 \sqrt{e \cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 a^2 d \sqrt{\cos (c+d x)}}+\frac{14 e^3 (e \cos (c+d x))^{3/2} \sin (c+d x)}{15 a^2 d}+\frac{4 e (e \cos (c+d x))^{7/2}}{3 d \left (a^2+a^2 \sin (c+d x)\right )}\\ \end{align*}

Mathematica [C]  time = 0.090007, size = 66, normalized size = 0.58 \[ -\frac{2\ 2^{3/4} (e \cos (c+d x))^{11/2} \, _2F_1\left (\frac{1}{4},\frac{11}{4};\frac{15}{4};\frac{1}{2} (1-\sin (c+d x))\right )}{11 a^2 d e (\sin (c+d x)+1)^{11/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(e*Cos[c + d*x])^(9/2)/(a + a*Sin[c + d*x])^2,x]

[Out]

(-2*2^(3/4)*(e*Cos[c + d*x])^(11/2)*Hypergeometric2F1[1/4, 11/4, 15/4, (1 - Sin[c + d*x])/2])/(11*a^2*d*e*(1 +
 Sin[c + d*x])^(11/4))

________________________________________________________________________________________

Maple [A]  time = 0.658, size = 190, normalized size = 1.7 \begin{align*}{\frac{2\,{e}^{5}}{15\,{a}^{2}d} \left ( -24\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}\cos \left ( 1/2\,dx+c/2 \right ) +24\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}\cos \left ( 1/2\,dx+c/2 \right ) +40\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{5}+21\,\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) -6\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}\cos \left ( 1/2\,dx+c/2 \right ) -40\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}+10\,\sin \left ( 1/2\,dx+c/2 \right ) \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}e+e}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cos(d*x+c))^(9/2)/(a+a*sin(d*x+c))^2,x)

[Out]

2/15/a^2/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*e+e)^(1/2)*e^5*(-24*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*
c)+24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+40*sin(1/2*d*x+1/2*c)^5+21*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1
/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-6*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-40*si
n(1/2*d*x+1/2*c)^3+10*sin(1/2*d*x+1/2*c))/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (e \cos \left (d x + c\right )\right )^{\frac{9}{2}}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(9/2)/(a+a*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate((e*cos(d*x + c))^(9/2)/(a*sin(d*x + c) + a)^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{e \cos \left (d x + c\right )} e^{4} \cos \left (d x + c\right )^{4}}{a^{2} \cos \left (d x + c\right )^{2} - 2 \, a^{2} \sin \left (d x + c\right ) - 2 \, a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(9/2)/(a+a*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

integral(-sqrt(e*cos(d*x + c))*e^4*cos(d*x + c)^4/(a^2*cos(d*x + c)^2 - 2*a^2*sin(d*x + c) - 2*a^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))**(9/2)/(a+a*sin(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (e \cos \left (d x + c\right )\right )^{\frac{9}{2}}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(9/2)/(a+a*sin(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((e*cos(d*x + c))^(9/2)/(a*sin(d*x + c) + a)^2, x)